NASA/CR-1999-209722
ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

César Mufioz
ICASE, Hampton, Virginia

November 1999

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Databasce, the
largest collection of acronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series. which includes the following report
types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

« TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
¢.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

* CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences. symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

« SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

* TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that help round out the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing

research results . . . even providing videos.

For more information about the NASA STI
Program Office, you can:

¢ Access the NASA STI Program Home
Page at http://www sti.nasa.gov/STI-
homepage.html

* Email your question via the Internet to
help@sti.nasa.gov

* Fax your question to thc NASA Access
Help Desk at (301) 621-0134

* Phone the NASA Access Help Desk at
(301) 621-0390

* Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-209722
ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

César Murioz
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
- NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NAS1-97046

November 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover. MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield. VA 22161-2171

(703) 487-4650

DEPENDENT TYPES AND EXPLICIT SUBSTITUTIONS

CESAR MUNOZ"

Abstract. We present a dependent-type system for a A-calculus with explicit substitutions. In this
system, meta-variables, as well as substitutions, are first-class objects. We show that the system enjoys

properties like type uniqueness, subject reduction, soundness, confluence and weak normalization.
Key words. explicit substitutions. dependent types, lambda-calculus
Subject classification. Computer Science

1. Introduction. Since the Ag-calculus of explicit substitutions was introduced in [1], several other
variants of explicit substitution calculi have been proposed; among others [38, 27, 20, 4, 28, 7, 24, 31, 10, 33].
By using substitutions as first-class objects, and de Bruijn indices notation for variables, the Ac-calculus
allows a first-order encoding of the A-calculus. In consequence, technical nuisances due to higher-order
aspects of the A-calculus, for example a-conversion, can be minimized or eliminated in explicit substitution
calculi. For instance, higher-order unification problems have been reformulated in a first-order setting via
some variants of Ag [8, 9, 25, 5].

However. explicit substitutions are not free of difficulties. Typed versions of these calculi lead to unex-
pected problems. It is well known now that Ao does not preserve strong normalization [30], that is, well-typed
terms may not terminate in Ao. Furthermore, as a rewrite system, Ao is not confluent on open terms [7].

In constructive logic, explicit substitutions and open termns form a framework to represent incomplete
proofs, i.e., proofs under development [29, 32]. In this approach, meta-variables are place-holders in a
proof-term, and an explicit substitution notation is necessary to delay the application of substitutions to
meta-variables waiting to be instantiated. Meta-variables have also been used as unification variables in the
higher-order unification methods presented in [8, 9, 25].

In order to apply explicit substitution techniques in a dependent-type framework, we develop a A-calculus
of explicit substitutions, called Allz, with dependent types and support for meta-variables.

The rest of this section gives an overview of the dependent-type theory in which we are interested, and
to the simply-typed version of Ag. We finish the section with a discussion about the main difficulties to
set the Ag-calculus in a dependent-type theorv. In Section 2 we present the Allg-calculus. Just as the
A-calculus extended with the 5-rule, which is not confluent on terms with type annotations (not necessarily
well-typed), Allz is not confluent due to type annotations on substitutions. However, using a technique
proposed by Geuvers in [11], we prove that it is confluent on well-typed expressions. We show how to adapt
Geuvers’ technique to Al in Section 3. In Section 4 we show the elementary typing properties of Al : sort
soundness, type uniqueness, subject reduction and soundness. In Section 5 we prove the main properties
on well-typed Allc-expressions: weak normalization, Church-Rosser, and confluence. In the last section we

discuss related work and sumimarize our work.

*Institute for Computer Applications in Science and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton,
VA 23681-2199, email: munoz@Wicase.edu. This research was supported by INRIA - Rocquencourt while the author was an
international fellow at the INRIA institute, and by the National Aeronantics and Space Administration under NASA Contract
NAS1-97046 while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA 23681-2199.

1.1. Dependent types. The Dependent Type theory, namely Al [18], is a conservative extension of
the simply-typed A-calculus. It allows a finer stratification of terms by generalizing the function space type.
In fact, in AIL. the type of a function Az: 4.7 is [Iz:4.B where B (the type of Af) may depend on z. Hence,
the tvpe 4 = B of the simply-typed A-calculus is just a notation in Al for the product Mx:4.B where z
does not appear free in B.

From a logical point of view, the All-calculus allows representation of proofs in the first-order intu-
itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Iz:A.B is a
proof-term of the proposition Va:4.B.

Terms in ATl can be variables z,y, ..., applications (M N), abstractions Ar:A.M. products Ilr:A.B,
or one of the sorts Type, Kind.! Notice that terms and types belong to the same syntactical category.
Thus. A.B is a term, as well as Ar:4.Af. However, terms are stratified in several levels according to
a type discipline. For instance, given an appropriate context of variable declarations, Ar:ALM e ALB,
Mir:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since
a circular typing as Type : Type leads to the Girard’s paradox [15].

Tvping judgments in All have the form
FHA: A

where T is a context of variable declarations, that is, a set of type assignments for free variables. We use the
Greek letters T', A to range over contexts. Since types may be ill-typed, typing judgments for valid contexts

are also necessary. The notation
T

captures that types in T are well-typed. The All-type system is given in Fig. 1.1.

In a higher-order logic, as AIl, it may happen that two syntactically different types become identical via
3-conversion. Rule (Conv) uses the equivalence relation =3 which is defined as the reflexive and transitive
closure of the relation induced by the g-rule: (Ar:A.M N) — M[N/x]. We recall that M[N/x] is just
a notation for the atomic substitution of the free occurrences of x in Af by N, with renaming of bound

variables in A/ when necessary.

1.2. Explicit substitutions and simple types. The Ao-calculus [1] is a first-order rewrite system
with two sorts of expressions: terms and substitutions.

Simple types are generated from a denumerable set of basic types a,b, ... and their functional closure,
i.e., if 4. B are simple types, then 4 — B is also a simple type. Well-formed expressions in the simply-typed

Ao-caleulus are defined by the following grammar:

Terms M, N == 1|(MN)|Xa.A]M[S]
Substitutions S, T u= dd| Tt |M-S|SoT
Types AB = ab...|A->B

In Ao, free and bound variables are represented by de Bruijn indices. They are encoded by means of the
n-times

PN
constant 1 and the substitution 1. We write 1" as a shorthand for T o...ot. We overload the notation ¢ to

I'The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop, Type)
and (x,0).

I'EAd:s
s € {Kind, Type}

a 1s a fresh variable

== (Empty) FTU{r: 4] (Var-Decl)
FT
FT) (r:-A4)el .
I'F Type: Kind (Type) F'tu: A (Var)
L't A: Type
'k A: Type a does not appear in T’
x does not appear in [’ Fr'u{r:A}-AM:B
Fru{er: A} F-B:s Fru{ec:A}-B:s
s € {Kind. Type} Prod s € {Kind, Type} A
TFImAD s rod TF AR oA p - (A
CHAM:A
I'FB:s
I'tM:Ir:A.B s € {Kind, Type}
Fr-N:A4A - A=;B Conv
TF (37 N) - A7 (ArpY , rrag (Conv)

FiG. 1.1. The Al-system

represent the Ao-term corresponding to the index 1, i.e.,
.)1 ifi=1
L { Ut ifi=n+1.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps cach index 7 to the
term 7, T maps each index i to the term i+ 1, S o T is the composition of the mapping denoted by T with
the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect
to the usual notation of function composition), and finally, M - S maps the index 1 to the term Af, and
recursively, the index i + 1 to the term mapped by the substitution .S on the index i.

A context in Ao is a list of types. The empty context is written e. A context with head 4 and rest I is
written A.T'. In that case, 4 is the type of the index 1, the head of T (if T is not empty) is the type of the
index 2, and so on.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping
from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context
A.A, the type of the term mapped by the substitution S on the index 1 is 4, and so for the rest of indices.

Typing judgment for substitutions in Ae¢ have the form:
'S Al

The Ao-calculus and its typing rules are presented in Fig. 1.2. When meta-variables of terms arce

considered, an additional typing rule is necessary to state that each meta-variable is typed in a unique

AaMN) — MIN-id (Beta)
(A N)[S] — (M[S] N[SDH (Application)
(Aa.M)[S] — Aa.M[1-(So7)] (Lambda)
M[S][T) — M[SoT] (Clos)
1[M - 5] — M {VarCons)
M[id] M (1d)
(S108)0T — S10(S20T) (Ass)
(M-S)oT —> MT]-(SoT) (Map)
ido S — S (Idl)
Soid — S (Idr)
to(M-S) — S {ShiftCons)
17 — id (VarShift)
1[S]- (1eS) — S (SCons)
ITFT a0 T &IILM g (A
FF—J\[:A—-)B‘YFI—N:A(APPI) I'FSv A A}_‘AI:A(CIOS)
TF{(MN):B T+ AMS]: A4
TFsT (Id) ITFioT (Shift)
TESe A AFTr A FFAM:4 TESp A
TFIoScRn, oomp) Fral SsAn (oo

Fic. 1.2. The simply-typed Ao-calculus (1]

context by a unique type [8]:

TyF X Ay (Metax).

The simply-typed Ao-calculus with meta-variables of terms is confluent [38] and weakly normalizing
[17. 33].

1.3. Dependent types and explicit substitutions. A dependent-type system for Al is not a simple
extension of the simply-typed Ao-calculus. First of all, it is not clear how to type expressions containing
meta-variables. Notice that in a dependent-type theory with de Bruijn indices, the order in which variables
are declared in a context is important. In fact, in the context A.I', the indices in A are relative to I'. But,
how is the dependence regarding meta-variables?

Even without considering meta-variables, setting Ao in a dependent-type theory presents difficulties.
Take. for example, the typing rule for simultaneous substitutions, the (Cons)-rule:

TFM:4 TESe A

T T

A dependent-typed version of this rule has the form

TEAM:AS] TES>A AF A: Type
I'FAM-Scv A4.A

(Consn).

First notice that the type given to Af in the premises of the rule is A[S] (up 1o conversion). The application
of the substitution S to the type A is necessary to take into account possible dependencies of variables in A
with terms in S. Hence, a type inference algorithm should use a higher-order unification procedure to infer
the type of M - S which depends on A.

Another drawback of (Consyy) is that it is not sound with respect to the usual typing properties. In
particular, a substitution can be typed with two contexts that are not convertible, i.e., types are not unique

modulo conversion. For example, consider the context?®
I' = Omet. L(Hn:nat (T n)). T:nat - Type. nat: Type

and the valid typing judgments

(1.1) I'klz:=0-id>rnat. T

(1.2) CFE{0): AT o)[x :=0-1id].

Since (T x)[x := 0 id] and (T 0)[xr := 0 - id] are convertible via Ao, and (T 0)[x := 0 - id] is a valid type,
we also have:
(1.3) CEIO): (T O)r:=0-id].

Using (Consp) with (Eq. 1.1) and (Eq. 1.2), we get:
(1.4) Fkly:=0)-2:=0-id] > y:(T 0). z:nat. T

and with (Eq. 1.1) and (Eq. 1.3):
(1.5) Ftly:=010)-x2:=0-id]>y:(T z). x:nat. L.
However, (T 0) and (T x) are not convertible, and then, the substitution [y := (1 0) - 2 := 0 - id] has two
types, y:(T 0). z:nat. I’ and y:(T x). x:nat. [', which are not. convertible.

To solve these problems, we use type annotations in substitutions, in a similar way as the Church style

A-calculus as opposed to the Curry style-— annotates binder variables in abstractions. The final version

of (Consyy) has the form:

THAM:AS] THEFS>A AR A: Type
FFAM-4 8> AA

(Consir).

Annotations in substitutions act as reminders of types, and they must be introduced and maintained by the
calculus of substitutions. In our previous example, substitutions in Eq. 1.4 and Eq. 1.5 should be annotated
with different types.

2For readability, we use named variables when discussing examples. Nevertheless, as we have said, Ao uses a de Bruijn

nameless notation of variables.

]

A different solution proposed by Bloo in [2] is to introduce substitutions in contexts and to deal with
these extended contexts via additional typing rules. This approach is similar to type systems with definitions
[41. 3]. where closures are typeable, but substitutions are not considered as typeable objects. We discuss
this approach in the last section.

When we consider annotated substitutions, the system may lose the subject reduction property due to

the non-left-linear rule (SCons): 1[S] -4 (t 0 S) — S. For instance, take the context
T = m:{T 0) = nat. Onat. :(Mn:nat.(T n)). T:nat — Type. nat: Type
and the substitution
S=[y:=00) 1o« := 0y id.
We verify that the following typing judgments are valid:

I'tSoey(T0). z:nat. T

LS s (ToS) b y(T x). z:nat. T.
(SCons)

But also. 1[S] -7, (10 5)
S o y:(T x). rnat. T. Therefore, the type of 1[S] (7) (T 0.5) is not preserved by rule (SCons).

S. However, since (T 0) and (T z) are not convertible, I'

The problem here is not the type system but the substitution calculus. Non-left-linear rules —like
(SCons) are not only harmful for typing. but are also usually responsible for non-confluence problems
(26, 7].

Nadathur [35] has remarked that in Ao with meta-variables of terms, but without meta-variables of
substitutions, rule (SCons) is admissible when the following scheme of rule is added to the system: 1t7] -
tn+l o+ 47 Since ™ is a shorthand, an infinite set of rules is represented by this scheme. Following
Nadathur's idea, we present in [33] a variant of A, namely Az, which has the same general features as Ao,
i.c.. simple, finite, and first-order presentation, but without rule (SCons) of Ac.

In this paper, we propose the Allg-calculus, which is based on Az, and show that Ml is a suitable

calculus for our purpose: explicit substitutions, dependent types and support for meta-variables.

2. Ml -Calculus. As usual in explicit substitution calculi, expressions of Ml are structured in terms
and substitutions. Since we use the left-linear variant of Ao, the Ag-calculus, we add the sort of netural
numbers. The Al -calculus admits meta-variables only on the sort of terms.

The set of well-formed expressions in AIlz is defined by the following grammar:

Natural numbers n = 0fn+1

Meta-variables X = XY ...

Terms AB,MN = Kind| Type|1|Na.B|As.M | (M N)|
M(S] | x

Substitutions S, T n= MM (M4 5]50T

The equivalence relation =y, is defined as the symmetric and transitive closure of the relation induced
by the rewrite system in Fig. 2.1.
The system Tz is obtained by dropping rule (Beta) from All;. As shown by Zantema [47]. the TI.-

calculus is strongly normalizing.

(Aa.M N) — M[N 419 (Beta)
(Aa-M)[S] — aps]M[L-4 (Sot")] (Lambda)
(TLy.B)[S] My Bl (Sot)] (i)
(M N)[S] — (M]S] N[S]) (Application)
MIS)[T] — M[SoT] (Clos)
1[M -4 5] — M (VarCons)
M) — M (1d)
(M-48)oT s M[T]-4(SoT) (Map)
108 — S (IdS)
1+l o(Af-48) — 1708 (ShiftCons)
gl o g BN N s (ShiftShift)
1oa! — 10 (Shift0)
Ut pel g (ShiftS)
Type(S] — Type (Type)

Fic. 2.1. The Mg -rewrite system

LEMMA 2.1. The [l z-calculus is terminating.

Proof. See [34]. The proof uses the semantic labeling technique [46]. O

The Allg-calculus, just as Ao, uses the composition operation to achieve confluence on terms with
meta-variables. Rules (Idr) and (Ass) of A are not necessary in All.

We adopt the notation { as a shorthand for 1[t"] for i = n + 1. In contrast to Ao, T is not a shorthand
but an explicit substitution in All;. Indeed, 1° replaces id and ' replaces . In general, " denotes the
mapping of each index i to the term i +n. Using 1", the scheme of rule proposed by Nadathur can be
encoded in a first-order rewrite system. Notice that we do not assume any meta-theoretical property on
natural numbers. They are constructed with 0 and n + 1. Arithmetic calculations on indices are embedded

in the rewrite system.

2.1. Meta-variables in All;. As we have said, meta-variables are first-class objects in Allg. Just as
variables, they have to be declared in order to keep track of possible dependencies between terms and types.

A meta-variable declaration has the form (X:pA4), where I’ and 4 are, respectively, a context and a type
assigned to the meta-variable X. The pair (T', A) is unique (modulo =,n,) for each meta-variable. This
requirement is enforced by the type system.

A list of meta-variable declarations is called a signature. We use the Greek letter ¥ to range over
signatures. The empty signature is written e. A signature with head (X:pA4) and rest ¥ is written (X:pA). ¥
We overload the notation ;. ¥, to write the concatenation of the signatures ¥; and X,

The order of the meta-variable declarations is important. In a signature (Xy:p, 4y). ... (X,:r, A,), the
type A4; and the context I';, 0 < ¢ < n, may depend only on meta-variables X;. i < j < n. The indices in 4;
are relative to the context I';.

The main operation on meta-variables is instantiation. The instantiation of a meta-variable X with a
term Af in an expression y (where y is a term or a substitution), denoted by y{X — A}, replaces all the
occurrences of X in y by Al. Application of an instantiation to a context I' (signature X) is denoted by
T{X — M} (Z{X — M}). It is defined in the obvious way.

In contrast to substitutions of variables, instantiations of meta-variables allow capturing of variables.
Instantiations are not first-class objects, i.c., the application of an instantiation is atomic and external to

the Al z-calculus.

2.2. The Ml;-type system. In A, we consider typing assertions having one of the following forms:
FET
to capture that the context T is valid in the signature X,
S:THEAM A
to capture that the term M has type A (the type M has the kind 4) in X; T, and

ETHSe A

to capture that the substitution S has the context type A in ¥ T
The scoping rules for variables and meta-variables in the ab(ﬁ'@ type assertions are as follows. Contexts
[. A. and expressions M. A.S may depend on any meta-variable declared in the respective signature L.
Indices in M. 4, and S are relative to their respective context I'.
Tvping rules for signatures, contexts, terms, and substitutions are all mutually dependent. They are
given in Fig. 2.2
In the following, we use = X, F LTHM:A andTF S A asshorthands for F X e, F e e AM: A,
and e:I' = S A, respectively.
Since there are no typing rules for Kind, the term Kind does not occur as a sub-term of a well-typed
eXpPressioln.
The Allg-svstem types at least as many terms as AIl. In other words, All; is a conservative extension
of AIL
LEMMA 2.2 (Conservative extension). Let M. A be ground terms in Mz, and T a ground context such
that A, A.T do not contain explicit substitutions, then T b M 4 in Ml if and only if T = M : A in All
(modulo de Bruijn indices translation).
Proof. By induction on the typing derivation. O
The following lemina states the conditions that guarantee the soundness of instantiation of meta-variables
in All ..
Lemna 2.3 (Instantiation soundness). Let M be a term such that £;T F M @ A, and ¥ a signature
having the form o, (X:pd). ¥y,
Loif XA, then B S{X — M} A{X = M},
2.4f LiAF N : B, then
S{Y = MEA{X » M}EN{X = M} : B{X — M}, and
34 TIAF S Ay, then S{X o MEA{YX = M} FS{X = M} > Ap{X » M}

Proof. By induction on the typing derivation. 00

2.3. Type annotations. Type annotations in substitutions are introduced with rules (Beta), (Lambda),
and (Pi). and then propagated with rule (Map). They can also be eliminated with rules (VarCons), (Shift-
Cons). and (Shift0). Notice that the type annotation propagated by rule (Map): (M -4 S)oT —s MI[T] A
(SoT)is A not A[T].

Consider the following example.

e (Empty)
STHEA: s
s € {Kind, Type} STHA:s
X is a fresh meta-variable s € {Kind, Type} .
(Metavar-Decl) ES AT (Var-Decl)

[(.\'2 [‘A). X

FY.T ' FE AT -
MioT'F Type : Kind (Type) Y ADE1: AR)

S:THA: Type
;T F A Type Y¥.ATFAM:B
S:ATFB:s Y:I'FMs.B:s
s € {Kind. Type} Prod s € {Kind, Type} b
STFIL B Crod STF A 1.5 AP
YIS A
YARM A
S.F}_AIH_\B S;A&—;l;g
S TEN: A : s € {Kind, Type}
Appl ;
ST F (M N) BV 5 7] ey O Y K R
Y. T
STFSo A (X:nd) €T
Y:AR A Kind Clos-Kind AE)\[]C r Motavs
ST F AQ]: Kng (ClosKind) TTF x g (Metavar)
S;THAM A4
S:THB:s T ESe A
+ SA_)

s € {Kind, Type}
Ay =, A

A= B
Alle (Conv) TTTSs A8, (Conv-Subs)

:I'HAM: B
FX. AT
FET 4 T TH1 e A Shit
STFTsT 0 STATF 7 A Ot
T FM:ALS)
S:TE S A, SIS A
YA FToe Ay AR A Type Cons
STFM ;55 15 (o)

STF T35 A, (Comp)

Fra. 2.2. The Allg-type system

9

Let I' = z:nat. T:nat — Type. nat: Type. We verify that
(2.1) T+ QAxnat Af:((T 1) — nat) dy:(T 2).(f y) 2): (T z) = nat) = (T z) = nat).

Reducing the (Beta)-redex and distributing the substitution inside the abstraction, we get

Arnat Af:((T &) = nat) \y:(T). fy) 2) (Beta)
Af:((T &) = nat) y:(T x).(f yD[z = 2 nar 1] et

Af((T 2) = nat).((Ay:(T 2).(f oD = F 1 pyomar @ 7= 2 nae 1))
We will check that the type in Eq. 2.1 is preserved by the reduction.

Thanks to the rewrite rule (Lambda), the type annotation for f in the substitution [f := f (7)5t
&= 2 0 T is (T @) — nat, that is, the type of the variable f before the distribution of the substitution
[:= 2 0 1] in the abstraction Af:((T x) = nat). y:(T x).(f y).

The typing rules for substitutions install the right context of variables. For example, the expression
Ay:(T r).(f y) will be typed in a context where the variable declaration f : (T z) — nat has been replaced

by f (T &) > nat. In fact, we verify

(2.2) f(T 2o nat. TH[f:=f 7 rymna =2 na o f(T x) - nat. x:nat. T

(2.3) f{T) = nat. einat. U F dy:(T 2).(f y) (T) = nat

hence, by rule (Clos) applied to Eq. 2.2 and Eq. 2.3:

(24) (T 2) = nat. T+ QT) f YD = F 4 syomat & = = nar 1] 2 (T 2) = nat
and by rule (Abs) applied to Eq. 2.4:

F e /\f((T :) 4 H(lf).(/\yi(T ‘I)(f I/))[f = f (T r)y—-nat I I= 2 nat Tl] .
((T z) = nat) = (T z) = nat).

The above example is due to Geuvers and Bloo [13], and it happens to be a counter-example for subject
reduction in caleuli of explicit substitutions with dependent types where substitutions do not keep track of
typing information. The use of annotated substitutions in Allz keeps the right type when a substitution is
propagated under an abstraction or a product. In fact, as we will show below, subject reduction holds in
All..

However, annotated substitutions raise a technical problem: the Allg-rewrite system is not confluent.
The problem even exists if we only consider local confluence on ground terms. In fact. the following critical

pair is not joinable in the general case, e.g., assume 4 and B to be different ground Allz-normal forms:
(L-ath)o(M pS)
(Shift());(ldsy \Y\Iap);(*'arC()ns);(ShiftCons);(IdS)

M-S M-4S
This problem is similar to the one pointed out by Nederpelt for the A-calculus extended with the 7)-
rule [36]. In that case, the confluence property holds on terms without type annotations in abstractions
(A-calculus in the Curry style), but does not on terms with annotated abstractions (A-calculus in the Church
style). In [11], Geuvers proposes a method to prove confluence for the gy-reduction on well-typed A-terms
written in the Church style. In the next section we adapt this technique in order to prove the confluence

property on well-typed Al expressions.

10

(Aa.M N) — M[N-1Y] (Beta)
(Aa-M)[S] — AasM[L-(Sot!)] (Lambda)
(IL4.B)[S] — Myq.B[L-(Seo1")] (P

1[AL - 5] — M (VarCons)
(M -S)oT — M[T]-(SoT) (Map)
ttlo(M-S) — 1o S (ShiftCons)
- — 0 (Shift0)
TR L A (Shift$)

Fia. 3.1. Modified rules in the AII%-T«MMLP system

3. Geuvers' Lemma. Geuvers' lemma is a weak form of the Church-Rosser property which suffices
to prove the main typing properties in systems where confluence on terms with type annotations i.e., in
the Church stvle- is not available. Geuvers’ technique uses a positive reformulation of the counter-example
of non-confluence, and the fact that the underlying calculus without typing annotations i.e.. in the Curry
style — is confluent.

The underlying Curry style of Ml is called AIIZ. In this calculus, substitutions do not have type
annotations (but abstractions do keep their type annotations). The set of well-formed terms in AT are the

same as in Allz, but substitutions have the following grammar:

Substitutions S, 7 = 1" |M-S|SoT.

As in the case of Allz. only meta-variables of terms are enabled in AIIZ. The AMIZ-calculus is obtained
by affecting the reduction system Allz as shown in Fig. 3.1. As expected, we define the N2-calculus as AITZ
without rule (Beta).

The positive reformulation of the confluence counter-example in AIl¢ states that if two terms are equal
without type annotations, then they are convertible via =y, .

DEFINITION 3.1. The erasing mapping |.| : MIz — MIZ is defined as follows:

Jo| = r if z € {1, Type, Kind} or x is a meta-variable
a.B| = II4.|B|
Aa-B|l = A M
(M N = (JM]IN])
S = (M)
ITH | — Tﬂ
ISoT| = |S]o|T|
a8l = [M]-|5]

The following are useful properties of the erasing mapping.

LEMMA 3.2 (Erasing properties). Let & and y be ezpressions in Allg, w be an ezpression in AMIZ, R
one of the rewrite systems Mz or Iz, and RP the corresponding rewrite system without type annotations,

. AIZ or T2, then

fi
cif o —— y, then |x| N lyl or |x] = [y|,

11

2. if | LN w, then there exists w' in Al such that e and |w'| = w, and
3. if r is an R-normal form, then |x| is an RP-normal form.
Proof. Properties (1) and (2) are proved by structural induction on . Property {3) is a consequence of
(2). 0
Lemaa 3.3 (Positive counter-example). Let & and y be expressions in Allz, if x| = |y|, then x =p1, vy,
and therefore. x =11, y.
Proof. Since || = |y|, ¢ and y have the same principal constructor. We proceed by structural induction
M| = Ag.|N| and thus. [4] = |Bj
. By induction hypothesis, 4 =y, B and M =p, N, and thus, A4 M =, Ap.N. In fact,

on e Ifor = X4 M.y =Ap.N, and |z| = |y], theu by definition, X4,
and M| = |N

the only interesting case is @ = M -4 S and y = N -g T. We get by induction hypothesis:

(3.1) M=n, N

(3.2) S=n, T

Since the function |.| erases type annotations from substitutions, we do not have by induction hypothesis
A =n, B. However, by using the counter-example, we have
MapSE (ol ps) 2 ar, s

We conclude with Eq. 3.1 and Eq. 32 that c =M -4z S=p, M -pS=n, N g T =y. 0

A consequence of the reformulation of the counter-example is that, if we erase the type annotations of
a term A and then annotate if again with an arbitrary term. we get a term N which is equivalent to A
modulo =y, .

DEFINITION 3.4. Let A be a term in Az, the annotation mapping ()4 : ANZ — Mg s defined as
follows:

rd = x if x € {L. Type, Kind} or r is a meta-variable
(Np,.B2)2 = I,4.B5
1
(ApA)2E = Apa. M2
(M N4 = (MAND
(M[ShH2 = MA[SHY
(L=
(SoT)2 = SdoT4
(M54 = ad. 52

LeyMa 3.5 (Erasing inverse). Let x be an expression in Al and A be a term in Mg, r =3, |J[—‘

Proof. 1t is not difficult to show that if w is an expression in M1, then w = |wd|. Let w = |z, by
Lemma 3.3, x =\n, |z|2. O

We use the next lemma in the proof of Geuvers’ lemma. .

LEMMA 3.6. Let x and y be expressions in AIZ and A be a term in Allg, if x e y, then x4 =, y4.
Therefore, if ¥ === y, then r2 =i, Y.

Proof. By induction on the depth of the AIIZ-redex reduced in z. O

The proof of Geuvers’ lemma uses a confluence property on the calculus without type annotations. We

left the proof of that property (confluence of ATIZ) for the last part of this section.

THrEOREM 3.7 (Confluence of MIZ). The AIZ-calculus is confluent.
THEOREM 3.8 (Geuvers’ lemma). Let Ay, By, Ay, By, M, N be terms in All.,
af M4, By =an, Ha,-Ba, then 4y =51, As and By =xn, B, and
2. 4f M =xn, N. where]\' is a Ml z-normal form. then there exists M’ in Ml such that M Ale] Al
and |A
Proof. We show only the first case. The second case is similar. By Lemma 3.2(1) and the definition of
.|, we have I 4). |B | =sng).y, B:f. Since A2 is confluent (Theorem 3.7), there exists M in AIIZ such

Mg Ang: . .
that IT} 4 ;. B =%+ M and 04, JBa| —= Al But there is no AllZ-redex with a product as the main

FRY |BI|LB |—1>|————>~1dn(l|B[LB

constructor, so A has the form II14.B where
By Lemma 3.5 and Lemma 3.6, for any Mlz-term N. 4; =xn, |4, l— =0, AN B =1, |Bl = =411, BX
Ao =an, A1 =i, AY and By =, |Bo|Y =11, BY. Therefore, A4; =z, 42 and By =xn, B». O

The rest of this section addresses the proof of confluence of the AIIZ-calculus (Theorem 3.7).

First, we prove that the II2-calculus - AI? without (Beta) is terminating and confluent.

LEMMA 3.9 (Termination of IR). T s a terminating rewrite system.

Proof. Since any reduction in I17 can be properly simulated in Iz (Lemma 3.2(2)), any infinite reduction
in 12 corresponds to some infinite reduction in IIz. But Iz is terminating (Lemma 2.1). thus 07 is
terminating. O

LEMMA 3.10 (Confluence of IZ). The 2 -calculus is confluent.

Proof. We mechanically check. e.g., by using the RRL system [23], that the IIZ-rewrite system has the
following critical pairs: .

e (Id)-(Clos)

ais) Y args) ML ans o)

e (Clos)-(Clos)
M[(S108)0T] Y25 af[S ST T2 M[S) 0 (S0 T)]
o (Shift0)-(Map)
s D (1thes ML i8] (1o S)
e (ShiftS)-(Map)
tros <1] yes ML o s (o s)
e (Lambda)-(Clos) and (Pi)-(Clos)

Let S, =1-((Set)o(L-(Tot) and S =1-((SoT)o 1),

0+ o
A arsor]-M[S1] S (A4 MD[S][T] et A aso1)-M[Ss]

+ +
n2 n2

Mys0o7y-B[S1] <— (4.B)[S][T] —= Ilys01).B[S:]

These critical pairs are [13-joinable (we recall that ouly meta-variables of terms are admitted). Using

an extension to the Critical Pair lemma proposed in [33] (based on similar extensions originally presented in

A— B M—N

T 7 (Refh) A = ag N (Lambday)
4, — B Ay — By . M — N S—T .
VB — ., B) ST —= A~ (Closn)
My — A, Ny —= N, (Applicationy) M— N S —T (Consy))

AL N —~ (AL N3) M S —=NT

A, — AL N — N,

S] — Sg Tl —_— T
(Aa.M; Ny) — AL[N, 1Y)

SoT, —= 5,07, 2 (Compy)) (Betay)

I1G. 3.2, The parallelization of (Beta)

[22, 40]), we conclude that T2 is locally confluent. Therefore, by Newman’s lemma and Lemma 3.9, ne is
confluent. O

The confluence proof of the AIZ-calculus uses a general method proposed in [45] to prove confluence of
abstract relations: the Yokouchi-Hikita’s lemma. This method shows to be suitable for left-lincar calculi of
explicit substitutions [7, 37, 33].

Lenata 3.11 (Yokouchi-Hikita's lemma). Let R and S be two relations defined on a set X such that: 1)
R is confluent and terminating, 2) S is strongly confluent, and 3) S and R commute in the following way:
foranyr.y,z € X, ifr A y and x =, z, then there exists w € X such that y LALL w and z L
Then the relation R*SR* is confluent.

Proof. See [7]. 0

We take the set of MI2-expressions as X, [I? as R and B) as S, where By is the parallelization of (Beta)
defined in Fig. 3.2.

Leania 3.12. TIZ commutes over By, i.e., if x reduces in one 12-step to y, and in one By-step to z,

ne ng- ng:
— w and z — w.

then there exists w such that y
Proof. By case analysis on the redex reduced in z. O
We are now ready to prove the confluence property of AIIZ.
Theorem 3.7. The AIIZ-calculus is confluent.
Proof. We verify that IIZ and B), satisfy the conditions of Yokouchi-Hikita's lemma, that is,
1. I is terminating and confluent (Lemma 3.9 and Lemma 3.10),
2. By is strongly confluent, since (Beta) by itself is a left linear system with no critical pairs (c.f. [19]),
and
3. NI commutes over By (Lemma 3.12).
Therefore, H%*B”H%* is confluent.
o- o-

N . All Al
Note that AIIZ C I9" By C AIIZ". Let x be an expression in AIIR. If # =%+ y and ¢ —=+ =z, then
L £ Pt c P L

. (n2-Bn2-y* (MZ*Byn2== ATIZ ang-
there exists w such that y ————>— w and 2 —————— w. So,y =%+ wand z —%+ w. O

4. Elementary Typing Properties. The elementary typing properties of Al are
e Sort soundness: the type of a term is a valid sort.
o Type uniqueness: the type of a term is unique module =,y,.

o Subject reduction: the Al -rewrite system preserves typing.

o Soundness: there always exists a path of well-typed terms between equivalent well-typed terms.

We use Geuvers' lemma to prove the last two of the above properties.

THEOREM 4.1 (Sort soundness).

1.

If S:THM: A, then A= Kind or Z;T F A : s, s € {Kind. Type}, and

2.4f L:THSp A then ;AL

Proof. By induction on the typing derivation. O

THEOREM 4.2 (Type uniqueness). Let T'y and Ty be such that Ty =xp, T2,

1.
2.

if STy EM:Aand 8Ty F M : B, then 4 =1, B, and
if Ty FESe Ay and STk S Ay, then Ay =xn, Ao

Proof. By simultaneous structural induction on M and S. O

. . . . Alic” .
THEOREM 4.3 (Subject reduction). The Al -calculus preserves typing, if x 25, y. for an expression

x. then

1
2.

ifwis atermand S;TF o A, then 8;T Fy: A, and

if ¢ is a substitution and T;T - ax o A, then T;T Fyo Al

- Az ..
Proof. We show that typing is preserved for one-step reductions (i.e., —=). and therefore, it is also

Me™

. e . A Al . N
for the reflexive and trausitive closure (i.e., —=). Let x —= y be a one-step reduction. We proceed hy

induction on the depth of the redex reduced in .

In the initial case, r is reduced at the top level, and we proceed by case analysis. We show the case of
rule (Beta):

Let £:TF (A4.M N): B. Weshow ;T F M[N -4 1] : B.

We
1.

=W

1

=1 &

have:

(a) S:T F A M -y, By, (b) ;T F N : 4y, and (¢) B =xn, Bi[N -4, 19], by inversion of rule
(Appl) applied to the hypothesis.

(a) S:T F A : Type, (b) T:AT F M : By, (¢) ;AL F By @ 52, s2 € {Kind, Type}, and (d)
4.Bs =an, Ly, .By, by inversion of rule (Abs) applied to (1-a).

=

=

) A =1, 4; and (b) Ba =an, By, by Geuvers’ lemma (Theorem 3.8) applied to (2-d).

T+ N oA, by rule (Conv) applied to (1-b), (2-a), and (3-a).

©:TF N -4 1> AT, by rule (Cons) applied to (4), (2-a), and ;T 1% T,

Bo[N a1 =am, Bi[N a1 =an, Bi[N -4, 1% =an. B, by (1-¢) and (3).

Y.TF B: sy, s € {Kind, Type}, by sort soundness (Theorem 4.1) applied to the hypothesis. Note

4

that the case s = Kind is not possible.

Therefore, we have the derivation

AT R M : By (2-b)
AT E By 1 sy (2-¢)
STFN 41 AT (3)
- a - 77— (Clos) -
LT EMIN 41" Ba[N -4 1] 6) (7) (Conv)

S:TFMN 41 B

The other cases are similar. The induction step cases do not present any difficulty. 0

Sometimes the conversion rule (Conv) is expressed as [14]:

r'-AM:A
'tB:s
s € {Kind, Type}
A— Bor B— 4

TFA B (Conv?)

Rule (Conv) seems to be more general than rule (Conv’). In fact, the latter one allows conversions of
types only via a path of well-tvped terms. Geuvers and Werner [14] define a type system to be sound if the
convertibility of terms remains in the set of well-typed terms. In sound systemns, rules (Conv) and (Conv’)
are equivalent.

We use the following lemma in the soundness proof of the AIl.-system.

LeEMMA 4.4, Let x.y be Ml -expressions in Iz -normal form such that |z| = |y|, if ¢ end y are well-typed
cxpressions, then they are convertible via a path of well-typed expressions.

Proof. By structural induction on r and y. O

THEOREM 4.5 (Soundness). If LT F A A, ;T N : B and M =1, N, then M and N are

convertible via a path of well-typed terms.

Proof. From Lemma 3.2(1), we have |M| =i, |N|. The confluence property of /\H% states that there
a-

. ATT ., Ange . .
exists ¥ € A2 such that |M| —— z and |N| —%=+ 2. By Lemma 3.2(2), there exist M;.N; in All.
Xig* . Al . . . o
such that M —= AM,. N —= N|, and |M,| = |N1| = «. Since Iz is terminating (Lemma 2.1), there

. . n , o Heto o . .
exist Als, Ny I p-normal forms such that A, —+ Ay, N| —=+ N,. By the subject reduction property

(Theorem 4.3), X:T F Al - 4 and :T'F Ny @ B, and all the terms in both reductions are well-typed.

. an D=* . .,

Now, from Lemma 3.2(1), we have 1 —5» |My| and # —5—= |Ny|. But M, and N, are Ilz-normal
. By

Lemma 4.4, M, and N, are convertible via a path of well-typed terms. Therefore, Af and N are convertible

AL and |N)| are HZ-normal forms. Since I% is confluent. [AMs| = [N,
9 a c

forms. thus, by Lemma 3.2(3),

via a path of well-typed terms. DO
A direct consequence of typing soundness and subject reduction is the following property.
Leyma 4.6. If S:THAL: A]. S,F F AL, ;—1‘_), and M, Z Al My, then Al =2, A,

Proof. By induction on the length of the paths of well-tvped expressions converting M; to M,. 0

5. The Main Properties: Weak Normalization and Confluence. In this section we address the

proof of the main properties of All; on well-typed expressions: weak normalization and confluence.

5.1. Weak normalization. The Allg-calculus does not preserve strong normalization of AIl. In fact,
the counterexample shown in [30] for Ae may be reproduced in Al with some minor modifications.

Nevertheless, we prove that Allz is weakly normalizing on well-typed expressions, i.e., there exists a
strategy to find Allz-uormal forms on well-typed expressions. In particular, we propose a proof of strong
normalization of the strategy that performs one step of (Beta) followed by a IIz-normalization.

We use the standard technique of reducibility, originally due to Tait for the simply-typed A-calculus
[42], and then extended by Girard to the system F' (the A-calculus of second-order) [15]. From the diverse
proofs of termination using a reducibility notion, we follow the presentation given in [12] for the Calculus of
Constructions, which is based on saturated sets. We adapt this proof for the Al1z-calculus. In order to avoid
some technical problems due to the non-confluence of the calculus with type annotations (not necessarily
well-typed), we define saturated sets in a slightly different way. However, the structure of the proofs is the

same.

16

We use (r))p, as a shorthand for the set of Il z-normal forms of z. The set containing all the I1--normal
forms of All. is denoted by A F.

DEFINITION 5.1. Let x,y € N'F, we say that r 3llc-reduces to y, denoted by x g y,ifx ﬂa—)» w
and y € (w)ly,. Notice that the sct of Sllg-normal forms is equal to the set of Ml z-normal forms, and
that e, y implies x e’ y. In fact, we will show that 311, is strongly normalizing on well-typed
expressions, and therefore, Az is weakly normalizing on well-typed expressions.

We denote by SA the set of 3I¢-strongly normalizing expressions of N'F.

DEFINITION 5.2. Let M be a term in N'F. The term M is neutral if it does not have the form Ay N.
The set of neutral terms is denoted by N'T .

DEFINITION 5.3. Let & be in N'F. The set of annotations of x, denoted by R(xr), is defined inductively

as follows:

R(x) = 9 ifr e {Kind Type, 1} or x =1" or & is a meta-variable
N(I4.B) = R(4)UR(B)

R(Aa.M) = R(A)UR(M)

R(AMIN) = R(M)UR(N)

R(M[S]) = R(M)UR(S)

R(SoT) = R(S)UXR(T)

R(M-48) = {AJUR(M)UR(S)

DEFINITION 5.4. A set of terms A C N'F is saturated if
1. AC SN, '
2. if M e€ANand M e N, then N € A,
3. if M € N'T, and whenever the reduction of a 81 -redex of M leads to a term N € A, then Al € A\,
and
4. if M e A |M|=|N|, and }(N) C SN, then N € A.
The set of saturated sets is denoted by SAT.
The following corollary is a trivial consequence of Def. 5.4(3).
COROLLARY 5.5. Let M € N'T such that M is a 3l ;-normal form, for any A € SAT, M € A.
The following lemmas show particular cases of terms that are in saturated sets.
LEMMA 5.6. For any A € SAT, substitution S € SN, and meta-variable X, we have (X[S]) ;. C A
Proof. Let A € SAT and M € (X[S]){p,. Since M is neutral it suffices to consider the reductions of A/
(Def. 5.4(3)). We reason by induction on »(S)?. Only two reductions are possible:
o M 2% X and by Corolldr\ 55, X € A.
M e, X|[T] where S Ale, p, By hypothesis, T € SA, and »(S) > v(T). so by induction
hypothesm, X[TDdn, €A
In both cases, M reduces to terms in A, thus, A € A. O
LEMMA 5.7. For any A € SAT, and terms A,B € SN, [14.B € A.
Proof. The term I14.8 is neutral. By Def. 5.4(3) it suffices to consider the reductions of II11.B. We
reasou by induction on v(4) + v(B). B
LEMMA 5.8. SA” € SAT.
Proof. We verify the following conditions (Def. 5.4).

3¢If x is strongly normalizing, v(x) is a number which bounds the length of every normalization sequence beginning with
2" [l6].

1. SN C SN,

2. If M € SA” and M 2% N then N € SN

3. If Af € AT, and whenever the reduction of a 3llz-redex of M leads to a terin N € SA, then
M e SN.

1. If M € SA', |M]| = |N]|, and R(N) C SA, then N € SN

DEFINITION 5.9, If AL A" € SAT, we define the set

Ao N ={MeNF|YNeA, (MN)e N}

LuaMMA 5.10. SAT is closed under function spaces, i.c., if A,A' € SAT, then A — A’ € SAT.
Proof. We verify the conditions in Def. 5.4:
1. A > A C SN
Let Af bein A = A’. By Def. 5.9 and Def. 5.4(1), (M N) e A’ C SN forall N € A. Thus, M € SN
2.1 M eA— Nand M e, N,then N € A -5 A’
Let N be in A. We show that (N N;) € A’. By hypothesis, (M Ny) € A" and (M N)) e (N N
Thus, (N N) € A’ by Def. 5.4(2).
3. If M € AT, and whenever the reduction of a 3l z-redex of A leads to a term N € A — A’, then
MelN-o Al
Let Ay bein A, we show that (M N|) € A’. Since (M N)) € N'T, it suffices by Def. 5.4(3) to prove
that if (A N|) 2y N3, then N, € A'. We have N; € A C SA”. We reason by induction on v(N,).
Since M € N'T. (M Ny) 8l z-reduces in one step to

o (M Ny). with A7 225 A7, By hypotheses, M, € A — A’ and N, € A, thus (M, Ny) € A",

o (M Ny), with Ny e, No. By Def. 5.4(2), Ny € A and v(N,) < v(N}). thus, by induction
hypothesis, (M Ny) € A"
In both cases, (M N}) reduces to terms in A’. Hence, (M Ny) € A’
1 I M e N N M| = N[, and R(N) C SN, then N e A = A",
Let Ny be in A, We show that (N N,) € A'. By hypothesis, (A N|) € A'. but also, |{(M N,)| =
(N Np)|. By Def. 5.4(4), it suffices to show that R(N N;) C SA. Since N) € A C SA, we have
R(N1) € SA". Therefore, R{N N;) = R(N)UR(N;) C SN

The next step in the proof is the interpretation of types.
DerFINITION 5.11. The type interpretation function of terms in Ml is defined inductively as follows:

=] = SN if r € {Kind, Type,1} or x is a meta-variable
[Af[S]] [A]

[(M N)] = [AM]
[*+.B] = [B]
[M1.B} = [4] - [B]

We have the following corollary of Lemma 3.10.
COROLLARY 5.12. For any term M, [M] € SAT.

Lists of types, i.c., contexts, are interpreted by a set of explicit substitutions.

18

DEFINITION 5.13. The valuations of T, denoted by '], is a set of substitutions in N'F defined

inductively on I as follows:

[e] = {1" | for any natural n}
[4.A] = [JU{M 5 SeNF|Me[B].Se[A]l.BeSA.[4] = [B]}

LEMMA 5.14. For any T, [T] C SA.
Proof. We show by structural induction on S that if S € [I'], then § € SA". O
DEFINITION 5.15. Let M be a term in N'F and S be a substitution in NF. We define
1. T satisfies that M is of type A, denoted by T' }= M : A, if and only if (M[T])]y, C [A] for any
T e[r].
2. T satisfies that S is of type A. denoted by T |= S > A, if and only if (So T)ly, C [A] for any
T e [I].
We are almost ready to prove the key property which leads to the strong normalization property of 311 ..
It states that if [= A/ : 4, then T+ M : 4. Before that, we need some more technical lemmas.
LEMMA 5.16. Let 4 be a term in SN, For all substitutions S € [['] and term M € [A]. (M -4 S){y, C
[4.1].
Proof. Note that M -4 S is not necessarily in A’F. But there are two cases: (M -4 Sin, = {Al -4 S}
or (M -4 S)in, = {1"}. In both cases we verify that (M -4 S)ip, C [4T]. DO
LEMMA 5.17. Let M a term in NF, if S:TF M : 4 and ;T + A: Type, then [M] = SN
Proof. By structural induction on A. We show the case where A = (Af; Aly), the other cases are
similar. We have:
1. (a) &iT F M, - Iy, By, (b) ST F (M) My) : Byi[Ms -4, 1°), and (¢) 4 =xn, Bi[Ms-a4, 1], by
inversion of rule {Appl) applied to the hypothesis.
2. (a) &:T F 4, : Type and (b) ;4.0 + By : 51, 51 € {Kind, Type}, by inversion of rule (Prod)
applied to (1-a).
iDLk By [Ms -4, 19 : 52, s2 € {Kind, Type}, by sort soundness (Theorem 4.1) applied to (1-b).
$2 =an, Type. by Lemma 4.6 applied to ;T = 4@ Type, (1-¢). and (3).

e

s» = Type, by Geuvers' lemma (Theorem 3.8) applied to (4).
s1 = Type. by (2-b), (3), and (5).
Then, applyving rule (Prod) to (2) and (6), we get ;T F II4,.B, : Type. By Def. 5.11 and induction
hypothesis, [(A, M,)] = [M] =SA. O
LEMMA 5.18. Let M be a term in N'F and S a substitution i N'T,
1. if S;TFAM:4 and ;T F M 2B, then [A] = [B], and
2.9f S;TF S A and ;0 F S Ay, then [A] = [A2].

Proof. We only show the first case. The second case is proved by structural induction on A,. By type

o o

uniqueness (Theorem 4.2), we have 4 =,n, B, and by sort soundness (Theorem 4.1), 4 = B = Kind or
(S:TFA:5,XTFB: sy, and 51,9 € {Kind, Type}). The first case is trivial. For the second one, we use
soundness of MI; (Theorem 4.5) to conclude that 4 and B are convertible via a path of well-typed terms.
Hence, it suffices to prove that for any well-typed term Nj, if N RALEY Ny, then [N{] = [N2]. We prove
this by induction on the depth of the SIlz-redex reduced in Ny. The only interesting case is (VarCons), i.e..
1[Ay -4, S] — M;. We show that [1[M, -4, S]] = [M;].

e From Def. 5.11. [1[M, -4, S]] = [1] = SN

19

o If 1[A]) -4, S] is well-typed in ;T then by inversion of rule (Cons), we have ¥;T' + M, : A[S] and
YT+ A44[S]: Type. Therefore, by Lemma 5.17. [AL;] = SA”.

So, [1[M, -4, S]) =M] =SN. 0O

Lenmna 5.19. Let 4; € SN, and M. A2, B € NF, if for all N € [Az], (M[N -4, 1Dy, C [B]. then
As, M e [4:] = [B].

Proof. Let N € [42]. We want to show (A4,.M N) € [B]. Since (A4, .M N) € N'T and [B] C SAT,
it suffices to prove that if (A4, .M N) —= M’ then M' € [B]. By hypotheses, for all N € [4.],
(MN -4, 1Dy, C [B] € SA: in particular, (M[1-4, 1"y, € SN But, M € (M{L-4, 1]y, and
thus, A € SA". We also have N € [4:] € SA and 4, € SA". Thus, we can reason by induction on
v(M) + v(N) + v(dp). Inone step (Mg, .M N) SlIz-reduces to:

o (M[N -4, 1°Ddy;, . By hypothesis. (M[N -4, 19T\, € [B].

o (A, .M Ny with N Mg Ny. By Def. 5.4(2). Ny € [42]. then by hypothesis, (M[N, -4, T"){y, C
[B]. But also. v(N7) < v(N), thus, by induction hypothesis, (A4,.A N|) € [B].

o (As.M N), with A, U5 4 But A € SN, since A4y € SN, therefore, for any M, € (M[N -4 1)1y, ,
R(M,) C SA”. Wehave, [(MIN <4,)4, | = [(MN -4 1), |*. By Def. 5.4(4), (M[N -4 1))y, C
[B]. But also v(4) < v(4;), thus, by induction hypothesis, (A4.M N) € [B].

e (A4, .M, N), with M e M. Using the properties of Al and)\H%. if Ny € (M[N -4, T”]),L”C.

then N e No, where |[No| = [(M{[N -4, 1) {p, | By hypothesis, Ny € [B], thus, by Def. 5.4(2),
N, € [B]. Since M, and 4 are in SA', for any Mz € (M;[N -4, 1%y, R(A2) C SA. We obtain
(AL[N -4, 1944, € [B] by Def. 5.4(4). But also »(M,) < v(M), thus, by induction hypothesis.
(Aa,.M, N) € [B].
In any case, (A4,.M N) reduces to a term in [B] and, therefore, (A4, .M N) € [B]. O
We are ready to prove the key lemma, the soundness of = with respect to +.
LEMMA 5.20 (Soundness of). Let M, S € ANF,
1S THAM: A thenT E M: A, and
2 i S:THESe A thenT E S Al
Proof. Let T € [I']. We proceed by simultaneous structural induction on M and S. We show the main
cases. Tu the proof, ff 4(S) is a shorthand for 1-4 (S o 1).
e M =X (X is a meta-variable). We show that (X[T])ly, C [4].
There are two cases:
— T =1". Therefore, (X[T]){y, = {X}. But also, X is a neutral Fllz-normal form. Hence by
Corollary 5.5, X € [4].
~ T #1°. Therefore, (X[T]){y, = {X[T]}. By Lemma 5.14, T € SA". Hence by Lemma 5.6,
X[T] e [4]-
o M =1I,,.B,. We show that (ILy, .B\[T])}{y;, € [4].
By inversion of rule (Prod), ;T F A : Type and &; 4,.T + B, : s, s € {Kind, Type}. Note that if
My € (TLy, .B)[TPIn, then My = I14,.B2, where 4> € (A [TDhn, and Bs € (B[N 4, (T)Dn, -
By induction hypothesis on A, (A[T1]){y;, C [Type] = SN holds for all Ty € [[']. Assuming
T, =T, we conclude 4, € SN, and assuming T} =1°, we conclude A, € SN
Let Ty € (4, (T, We have |By| = [(Bi[T2])dy;, | and T> € [A.T]. By induction hypothesis on
B, (Bi[To))yy, C [s] = SA holds. But, (B,) € SN Hence by Def. 5.4(4), Bs € [s] = SN.

4Since the II%—('aI(‘ulus (I without annotations of types in substitutions) is confluent {(Lemma 3.10), we use the following

property: for any My M2 € (Mg, . AL} = [M.

20

Since Ay, By are both in SA', we have I14,.B> € [A] (Lemma 35.7).

o M = A4, .M. Weshow that (A, .M [T])n, C [A]
By inversion of rule (Abs), ;T F 4 @ Type, &; 4.0 F Ay - B and ST F Ay, A, 2 o, B
By Lemma 5.18, [4] = [H4,.B] = [4:] — [B]. Note that if N € ((A4q,.M)[T])dy,. then
N = Xa . My, where Ay € (A [Ty, and My € (M, [4, (T)Ddy1,- By induction hypothesis on A;.
(Ai[T1])dn, C [Type] = SA holds for all Ty € [I']. Assuming T} = T, we conclude A» € SN, and
assuming T =1°, we conclude A; € SN
Now we prove that A4,.M. € [4,] = [B]. From Lemma 5.19, it suffices to prove that for any Ny €
[4:], (ALINT -4, 194y, C[B]. Let No € (ALIN; -a, 1'Ddy, and Ty € (14, (T) o (N} -4, Ndn, -
We verify that |[Nao| = [(M[T2]dy] and Ty € [4,.T]. Therefore. by induction hypothesis on Al .
(M [T2]dy, C[B]. But R(Ny) € SN\, thus, Ny € [B] by Def. 5.4(4).

0
Now, we show that 3, is strongly normalizing.
LEMMA 5.21 (Strong normalization of 3I1z). Let M be a term in N'F and S be a substitution in N'F.
1. If ;T F M @ A, then M € SN, and
2.4f L:TFSp A, then S € SN
Proof. By Def. 5.13, tY¢ [I'].
1. By Lemma 5.20, M € (M[1°]){y;, C [4]. By Corollary 5.12 and Def. 5.4(1), [A] € SN
2. By Lemma 5.20, S € (S0 1%) |y, C [A]. and by Lemma 5.14, [A] C SA”
|

Finally, we prove weak normalization on well-typed Allz-expressions.
THEOREM 5.22 (Weak normalization). Let M be a term in Mg and S a substitution in M.
1 If ;T F M : A, then M is weakly normalizing, and
2. 4f L;TF S A, then S is weakly normalizing.
Therefore, M and S have Al -normal forms.
Proof. By Lemma 2.1 there exist M, S; € A'F such that M Ml My and S Hel, S;. The subject
reduction theorem (Theorem 4.3) states that typing is preserved under reductions. Hence, ;T + A : 4
and ©:T + S, > A. Therefore. by Lemma 5.21, M| and S| are both in SA”. Finally, note that 3IIz-normal

forms in A" F are MIg-normal forms, too. O

5.2. Confluence. The Church-Rosser property states that if two well-tyvped expressions are convertible,
then they are joinable. The confluence property states that all the reductions of a well-typed expression are
joinable.

We need the following lemma coined in [44].

LEMMA 5.23. Let « and y be Mg -normal forms such that x =xn, y. Then. « =y if

e risaterm, ;I Fr:Adand T;Toky: B, or
o 1 is a substitution, ;T F v Ay, ST Fyp Au, and Ay =5, Ao,
Proof. By Lemma 3.2(3),

AMIZ is confluent (Theorem 3.7), || = |y| holds. Finally, we proceed by structural induction on x. We use

x| and |y| are AIZ-normal forms, and by Lemma 3.2(1), |z =g ly|. Since

the fact that sub-terms of well-typed normal forms are well-typed normal forms. The only interesting case
is # = M[T]. Since 2 is a Allg-normal form, only two cases are possible:
e M =1and T =1"+! This case is trivial, since by Def. 3.1, 1[1"*!] = |1[t"*!]]. Therefore, x = y.
e M = X. where X is a meta-variable and T #1%. By hypothesis, y = X[T}] where |T| = |T}|. By
Lemma 3.3, T =5, Ti. Let A be the type of T and Ay the type of 7). By the inversion of rule

21

(Clos) applied to x and y, it holds that X is well-typed in both contexts A and A,. By inversion of
rule (Metavar), A =51, A;. Thus, by induction hypothesis, T = T}, and thus, r = y.

The above property is not valid when A; #an, Ay, Take, for example, the context
I = m:(T 0) = nat. O:nat. L(n:nat (T n)). T:nat — Type. nat: Type
and the two substitutions
Si=[y=00) (1, x:=0q1

and

n
™

=[y:=00) 70 7:=0"nat TU]-
By Lemma 3.3, S) =an, S2. Also,
'S, oy:(T x). conat. T
and
'k Sspy:(T 0). xinat. T.

In this case. the well-typed substitutions S, and S, are =g, -convertible, but they are not identical.
TurorEM 5.24 (Church-Rosser). Let x and y be such that x =xn, y. Then, x and y are Ml -joinable,
. . ATl " Allc* :
i.e.. there exists w such that 1 — w and y — w, tf
I.risaterm, ;0 b Aand S T2 by B, or
2. is a substitution, L: T Faxo A, ;T Fyp Ay, and Ay =xn1, As.
Proof. By weak normalization theorem (Theorem 5.22), there exists Allz-normal forms o' and y' such
Alle” Al . - . .
that » =% &' and y =5+ . It suffices to show that x' = ¢', which is a consequence of subject reduction
theorem {Theorem 4.3) and Lemma 5.23. O
Confluence of Allz is a consequence of the Church-Rosser property (Theorem 5.24) and subject reduction
(Theorem 4.3).
. .) . ATl " AL,
CoROLLARY 5.25 (Confluence). Let :r be an arbitrary well-typed expression. If r —— y and r —— =
i A" AlC”
for some y, =, then there exists w such that y —— w and z — w.
Since Ml enjoys both Church-Rosser and weak normalization, we have that Allz-normal forms on well-
typed terms always exist and they are unique. Thus, the equivalence on well-typed expressions is decidable.
COROLLARY 5.26 (Decidability). The equivalence x =511, y is decidable if
erisaterm, LDy Fr:Aand STty B, or

e & is a substitution, S0 Faxo A, T; T Fyp AL

6. Related Work and Conclusion. Explicit substitutions and the let-in constructor of functional
ML-style programining languages have similar characteristics. In both mechanisms the application of a
substitution to a term can be delayed. For example, let = := 0 in Ay:A.x will be unfolded to Ay:A.0, in the
same way that (Ay:A.x)[r := 0] reduces to Ady:A.0. In their simply-typed versions, explicit substitutions and
let-in constructors act in the same way. However, in dependent-type systems, the relationship between

both mechanisms is not immediate.

22

To illustrate this, let us take the typing rule for closures - explicit applications of substitutions to
terms— in a dependent-type system:

TFS>A ARM:A
TF M[S]: A[S]

(C]()H]])‘

Consider the context
I' =m:(T 0) = nat. Onat. L:(In:mat.(T n)). T:nat — Type. nat: Type.

Using the above typing rule, the term (m (1 2))[x := 0] is ill-typed. This is because the information that the
variable o will be substituted by 0 in (n (I x)) is not taken into account by rule (Closy). Therefore, the
type of (I x) is (T x), but not (T 0) as expected by m. On the other hand, the same term can be written
using the let-in notation as: let & := 0 in (m (I x)). This term is well-typed because x has the value 0 in
(m (I x)), and thus let x := 0 in (m (I 1)} is going to be typed as (m (1 0)).

The unfolding of definitions before typing is not sufficient. when we admit meta-variables. The reason is
that substitutions and meta-variables may appear in normal forms. In this case, we cannot avoid having a
(Closp)’s like rule. The approach we have taken is to consider explicit substitutions different from the let-in
mechanism. The explicit substitution technique allows substitutions to be part of the formal language by
means of special constructors and reduction rules. In this way, the term (m (I r))[z := 0] is ill-typed, just
as the term (Az:nat.(m (I x)) 0) is. The let-in structure has a more complex behavior. It provides a
mechanism for definitions in the language. Formal presentations of type systems with definitions are given
in [41, 3].

Some type theories extended with explicit substitutions have been proposed: The Simple Type Theory
[1, 27, 8, 21, 6], the Second-Order Type Theory [1], the Martin Léf Type Theory [43]. the Calculus of
Constructions [39], and Pure Type Systems [2]. Except for the simply-typed version of As in [8], neither of
them considers terms with meta-variables as first-class objects.

Our main contribution is the complete meta-theoretical development of a dependent-type system with
explicit substitutions which handles explicitly open expressions (i.e., expressions with meta-variables). The
system enjoys the usual typing properties: type uniqueness, subject reduction, weak normalization, and
confluence. Applications of such a calculus are frameworks for the representation of incomplete proofs, and
first-order settings for higher-order unification problems.

In this paper, we have presented the All-theory. Although full polymorphism or inductive definitions are
not considered in this theory, the main difficulties, due to the mutual dependence between terms and types,
already arise in AIl. Other theories, such as the Calculus of Constructions, can be considered as the logical
framework for Allz [34]. Note also, that Allz does not handle the 7-rule. Extensional versions of explicit
substitution calculi have been studied for ground terms [24]. However, work is necessary to understand the

interaction with dependent types and meta-variables.

Acknowledgments. A major part of this research was done while the author was a research assistant in
the Coq Project at INRIA-Rocquencourt. Many persons have contributed to this work with useful remarks
and suggestions, in particular Gilles Dowek, Delia Kesner, and Nikolaj Bjorner. The author is very grateful

to them.

23

[1] M.

2] R.
3] R.

[] R.

5] D.

6] R.

7] P.-

8] G.

9] G.

[10] M.

(11] H.

REFERENCES

ABaDIL. L. CARDELLL, P.-L. CURIEN, AND J.-J. LEVY, Ezplicit substitution, Journal of Functional
Programming, 1 (1991), pp. 375-416.

BL0OO, Preservation of Termination for Ezplicit Substitution, PL.D. thesis, Eindhoven University of
Technology, 1997.

BL0O, F. KAMAREDDINE, AND R. NEDERPELT, The Barendregt cube with definitions and generalised
reduction, Information and Computation, 126 (1996), pp. 123-143.

BLoo anp K. H. RoSE, Preservation of strong normalisation in named lambda calculi with explicit
substitution and garbage collection, in Proceedings of CSN-95: Computer Science in the Netherlands,
Nov. 1995.

Briavn, Higher order unification as a typed narrowing, CRIN report 96-R-112, 1996.

D. Cosmo AND D. KESNER, Strong normalization of explicit substitutions via cut elimination in
proof nets (extended abstract), in Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, 29 June-2 July 1997, IEEE Computer Society Press, pp. 35 46.

L. CurieN, T. HARDIN, AND J.-J. LEVY, Confluence properties of weak and strong calculi of explicit
substitutions, Journal of the ACM, 43 (1996), pp. 362-397.

Dowkk. T. HARDIN, aAND C. KIRCHNER, Higher-order unification via explicit substitutions (ex-
tended abstract), in Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer
Science, San Diego, California, 26-29 June 1995, IEEE Computer Society Press, pp. 366 374.
Dowkk. T. HARDIN, C. KIRCHNER, AND F. PFENNING, Unification via explicit substitutions: The
case of higher-order patterns, in Proceedings of the Joint International Conference and Symposium
on Logic Programming, M. Maher, ed., Bonn, Germany, Sept. 1996, MIT Press.

C. F. FERREIRA, D. KESNER, AND L. PUEL, Lambda-calculi with explicit substitutions and com-
position which preserve beta-strong normalization, in Algebraic and Logic Programming, Fifth In-
ternational Conference, ALP'96, M. Hanus and M. Rodriguez-Artalejo, eds., Vol. 1139 of LNCS,
Aachen, Germany, 25 27 Sept. 1996, Springer, pp. 284-298.

GEUVERS, The Church-Rosser property for Sny-reduction in typed A-calculi, in Proceedings of the
Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California, 22-25
June 1992, IEEE Computer Society Press, pp. 453-460.

[12] ——, A short and flezible proof of strong normalization for the calculus of constructions, in Selected

Papers 2nd Intl. Workshop on Types for Proofs and Programs, TYPES'94, Bastad, 6 10 June
1994, P. Dybjer, B. Nordstrom, and J. Smith, eds., Vol. 996 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1995, pp. 14-38.

GEUVERS AND R. BL0O, Counter-example for subject reduction in calculi of explicit substitutions

with dependent types, personal communication, 1997.

. GEUVERS AND B. WERNER. On the Church-Rosser property for expressive type systems and ils

consequences for their metatheoretic study, in Proceedings of the Ninth Annual IEEE Symposium
on Logic in Computer Science, Paris, 4-7 July 1994, IEEE Computer Society Press, pp. 320- 329.

[15] J.-Y. GIrARD, Interprétation Fonctionelle et Elimination des Compures de UArithmétic d'Ordre

Supérieur, these de doctorat, Université Paris VII, 1972.

[16] J.-Y. GIRARD. P. TAYLOR, AND Y. LAFONT, Proof and Types. Cambridge University Press. 1989.

[17] J. GOUBAULT-LARRECQ. A proof of weak termination of typed lambda-caleuli. Lecture Notes in Com-

24

puter Science, 1512 (1998), pp. 134-153.

(18] R. HARPER, F. HONSELL, AND G. PLOTKIN, A framework for defining logics, Journal of the Association
for Computing Machinery, 40 (1993), pp. 143-184.

(19] G. HueT, Confluent reductions: Abstract properties and applications to term rewriting systems.
J.A.C. M., 27 (1980).

[20] F. KAMAREDDINE AND A. Rios, 4 lambda-calculus i la De Bruijn with explicit substitutions, LNCS,
982 (1995), pp. 45-62.

(21) ——, The As-calculus: Its typed and its extended versions, personal communication, June 1995.

[22] D. KapuR, P. NARENDRAN. AND F. OTTO, On ground-confluence of term rewriting systems. Infor-
mation and Computation, 86 (1990), pp. 14-31.

(23] D. KAPUR AND H. ZHANG, RRL: A rewrite rule laboratory-user’s manual, Tech. Report 89-03, De-
partment of Computer Science, University of Iowa. 1989.

[24] D. KesNer, Confluence properties of extensional and non-extensional A-caleuli with explicit substi-
tutions (extended abstract), in Proceedings of the Seventh International Conference on Rewriting
Techniques and Applications (RTA-96), H. Ganzinger, ed., Vol. 1103 of LNCS, New Brunswick,
New Jersey, 1996, Springer-Verlag, pp. 184-199.

[25] C. KiRCHNER AND C. RINGEISSEN, Higher order equational unification via explicit substitutions, in Pro-
ceedings of the International Conference PLILP/ALP/HOA 97, Vol. 1298 of LNCS, Southampton.,
Sept. 1997, Springer.

[26] J.-W. KLop, Combinatory reduction systems, Mathematical Center Tracts, (1980). _

[27] P. LESCANNE, From Ao to Xv a journey through calculi of explicit substitutions, in Proceedings of the
21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Jan.
1994, pp. 60-69.

[28] P. LESCANNE AND J. ROUYER-DEGLI, Explicit substitutions with de Bruijn’s levels, in Proceedings of
the International Conference on Rewriting Techniques and Applications (RTA-95), J. Hsiang, ed..
Vol. 914 of LNCS, Chapel Hill, North Carolina, 1995, Springer-Verlag, pp. 294-308.

[29] L. MAGNUSSON, The Implementation of ALF—A Proof Editor Based on Martin-Lif's Monomor-
phic Type Theory with Ezplicit Substitution, Ph.D. thesis, Chalmers University of Technology and
Goteborg University, Jan. 1995.

[30] P. A. MELLIES, Typed lambda-calculi with explicit substitutions may not terminate, LNCS, 902 (1995),
pp. 328-338.

[31] C. MuNoz, Confluence and preservation of strong normalisation in an explicit substitutions calculus
(extended abstract), in Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer
Science, New Brunswick, New Jersey, July 1996, IEEE Computer Society Press, pp. 440 447.

[32] ——, Proof representation in type theory: State of the art, in Proceedings of the XXII Latinamerican
Conference of Informatics CLEI Panel 96, Santafé de Bogotd, June 1996.

[33] ——, A left-linear variant of Ao, in Proc. International Conference PLILP/ALP/HOA’97, Vol. 1298 of
LNCS, Southampton, Sept. 1997, Springer, pp. 224 234.

[34] ——, Un calcul de substitutions pour la représentation de preuves partielles en théorie de types, these de

doctorat. Université Paris VII, 1997. English version available as INRIA research report RR-3309.
[35] G. NADATHUR, The (SCons) rule, personal communication. 1996.
(36] R. P. NEDERPELT, Strong normalization in a typed lambda calculus with lambda structured types. Ph.D.

thesis, Technical University Eindhoven, Eindhoven, 1973.

25

[37] B.
38] A.

Pacano, Confluent extensions of Ay, personal communication, 1996.
Rios. Contributions & U’étude de A-calculs avec des substitutions explicites, thése de doctorat, Uni-
versité Paris VII, 1993.

. RITTER, Categorical abstract machines for higher-order lambda calculi, Theoretical Computer Sci-

ence, 136 (1994), pp. 125-162.

SCHMIDT-SCHAUSS, Computational aspects of an order-sorted logic with term declarations, Vol. 395
of LNCS and LNAI, Springer-Verlag, New York, 1989.

SEVERI. Normalisation in LAMBDA CALCULUS and its relation to type inference, Ph.D. thesis,
Eindhoven University of Technology, 1996.

W. Tarr, Intentional interpretation of functionals of finite type i, Journal of Symbolic Logic, 32
(1967).

TasisTRO, Formulation of Martin-Lif's theory of types with explicit substitutions, tech. report.
Chalmers University of Technology, University of Goteborg, Goteborg, May 1993.
WERNER. Une Théorie des Constructions Inductives, thése de doctorat, Université Paris VIL. 1994.
YOKOUCHI AND T. HIKITA. A rewriting system for categorical combinators with multiple arguments,
SIAM Journal on Computing. 19 (1990), pp. 78-97.

[46] H. ZaNTEMA, Termination of term rewriting by semantic labelling, Fundamenta Informaticae, 24 (1995),
pp. 89-105.
[47) ——. Termination of ¢ and Il by semantic labeling, personal communication, 1996.

26

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated 1o average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) | 2. REPORT DATE
November 1999

3. REPORT TYPE AND DATES COVERED
Coutractor Report

4. TITLE AND SUBTITLE
Dependent tvpes and explicit substitutions

6. AUTHOR(S)
César Manoz

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-2199

Institute for Computer Applications in Science and Engineering

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 99-43

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Langley Research Center
Hampton. VA 23681-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
NASA/CR-1999-209722
ICASE Report No. 99-43

11. SUPPLEMENTARY NOTES

Langlev Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to Mathematical Stuctures in Computer Science.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Uneclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard .
Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

reduction, sounduess, confluence and weak normalization.

We present a dependent-type system for a A-calculus with explicit substitutions. In this system, meta-variables, as
well as substitutions, are first-class objects. We show that the system enjoys properties like type unigueness, subject

14. SUBJECT TERMS

15. NUMBER OF PAGES

explicit substitutions, dependent types, lambda-calculus 31
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION }18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
N -01-280- Standard Form 2 ev. 2-

Prescribed by ANSI Std. 239-18
298.102

